
Depending upon the relationship between the quantities ~ind and ~m, one or the other 
equilibrium concentration of soot particles in the flame is reached. The induction time 
Zind is then basically determined by the thermokinetic characteristics of the process, while 
the mixing time ~m is determined by the turbulence characteristics of the gas flow. 

The second portion of this study will be dedicated to questions related to calculation 
of the induction time and the dynamics of carbon complex formation. A third part will con- 
sider the effect on the soot formation process of the turbulent flame microstructure. 
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ROTATIONAL INSTABILITY OF THE LAMINAR FLOW OF PSEUDOPLASTIC 

FLUIDS IN A COAXIAL-CYLINDRICAL CHANNEL* 

S. Vron'ski and M. Yastrzhembski UDC 532.582.82 

Measurements of the stability limit of a spiral flow of a non-Newtonian fluid 
(n ~ i) in a coaxial-cylindrical channel are presented and substantiated. 

INTRODUCTION 

Many problems in mechanical and chemical engineering involve the motion of a fluid in 
an annular slit with a rotating cylindrical inside surface and a stagnant outside surface: 
the cooling of the rotors of electrical machinery [i]; dynamic filtration on a cylindrical 
interface [2]; the lubrication of bearings [3]; the operation of electrochemical reactors 
with a rotating cylindrical electrode [4]. Such flows are termed spiral flows and offer 
a particular advantage for high-viscosity pseudoplastic fluids. In this case, it is possible 
to reach high shear rates regardless of how long the fluid has been in the unit, i.e., re- 
gardless of the flow rate [5]. 

In the hydrodynamic analysis of spiral laminar flows, special attention is paid to the 
problem of their stability. Numerous theoretical and experimental studies have been conducted 
for Newtonian fluids. A survey of these investigations can be found in [6-8]. It is well 
known that a rotational flow becomes unstable when the angular velocity of the moving cylin- 
der is sufficiently high. In this case, there is an abrupt disturbance of the axial (longi- 
tudinal) head flow. The boundaries of stability of the spiral flow are determined by two 
dimensionless parameters: the axial Reynolds number and the critical value of the rotation- 
al Taylor number. Within the region of small Re, the critical value of Ta increases mono- 
tonically with an increase in Re. The monotonic stabilization of circular Couette flow by 
the axial flow is disturbed at sufficiently high Re and the value of Ta c decreases slightly 
with a further increase in Re [6]. The rotational instability of spiral flow is known to be 

*Z. P. Shul'man, a member of the editorial staff of Inzhenerno-Fizicheskii Zhurnal, arranged 
for the publication of this article. 

Institute of Chemical and Process Engineering of the Warsaw Polytechnic Institute. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 3, pp. 499-508, September, 1990. 
Original article submitted September 18, 1989. 

1196 0022-0841/90/5903-11965i2.50 �9 1991 Plenum Publishing Corporation 



Z 

f 
I Y 

-~/2 o +7/~ x 

Fig. i. Coordinate system. 

connected with the generation of secondary flows: toroidal (axisymmetric) eddies at Re < 
40 and spiral (nonaxisymmetric) eddies at Re > 40 [8]. 

Most theoretical studies of the stability of spiral flows have been based on the use 
of the method of small perturbations. Investigators have examined both of the above-men- 
tioned types of secondary flows: I) toroidal eddies [7]; 2) spiral eddies [8]. The linear- 
ized analysis for toroidal eddies agrees well with the experimental data at Re < 40. For 
large values of Re, the assumption of axisymmetric secondary flows leads to values of Ta c 
which exceed the critical value established experimentally. The theoretical predictions 
based on the assumption that spiral eddies are present are in complete agreement with experi- 
mental findings [8]. 

The stability of the spiral flow of linearly viscoelastic fluids has been studied theo- 
retically and experimentally within a limited range of parameters: it has been suggested 
that low shear elasticity has a destabilizing effect on rotational motion of the fluid. The 
stability of spiral flows of non-Newtonian fluids with variable viscosity has not yet been 
studied. 

The problem of the stability of Couette flow (which can be regarded as the limiting 
case of spiral flow) has been studied for viscoelastic [i0, ii] and purely viscous non-New- 
tonian fluids [12-14]. The complex hydrodynamics of the laminar spiral flow of non-Newtonian 
fluids creates methodological problems insofar as finding the stability limit is concerned. 
The apparent viscosity of the fluid changes over the entire annular slit, which makes it 
very difficult to select appropriate dimensionless parameters. 

In the present investigation~ we will examine the stability of the flow of pseudoplastic 
fluids at Re < 200. We will examine two of the most important questions related to this 
subject: the effect of pseudoplasticity on the onset of stability; the dependence of the 
stability limit on the size of the annular slit q = (RI/R2). The experimental method is 
based on measurements of mass transfer from the surface of the internal cylinder. We use 
a power flow "law" to describe the mechanical behavior of the fluids. 

i. Theoretical Premises. Laminar Flows of "Power-Law" Fluids 

The velocity of a spiral flow has two nontrivial components. Their distribution is 
expressed by the following formulas [15] (cylindrical coordinates, Fig. !): 

y 1 

V(g)/V,,, = (1 - -  ~1 ~) .f (g' - -  k2/g') f (g'' B, k) ay'/.f g~(g~-- k2/g) f (g' B, k)dg, 

g 1 

~y, B, k)dy, 

where 

(1) 

(2) 

f (y, B, k) = (B 2 (y -- k~ly) ~ + I/U'0P (3) 
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Fig. 2. Profiles of axial (a) and peripheral (b) velocity and 
viscosity (c) in a laminar spiral flow of a pseudoplastic fluid: 
n = 0.64, q = 0.66; i) Ui/V m = 32; 2) 2.6; 3) 0.12. 

The parameters B (characterizing the stress field) and k [corresponding to the position of 
the maximum of axial velocity V(y)] are formulas for relative velocity Ui/V m and are found 
from the relations 

1 I 

~ =  ~ vf(v, B, k)av/ .I O/v)t(v, B, k)dy, (~) 

1 1 

B = (Vm/U~) (1 - -  ~z) t' (1/g3) [ (g, B, k) d9/ S 92 (9 - -  k2/9) [ (g, B, k) dr. (5)  

Figure 2 shows profiles of velocity and viscosity for the values n = 0.64 and q = 0.66, 
corresponding to the lowest values of these parameters in our experiments. For a relative 
gap size q : i, the velocity distribution can be expressed by approximate formulas (Cartesian 
coordinates, Fig. i): 

1/2 
V(x)/V~= ,t x (SZx z + 1)P dx'/ S x2(SZxZ+ 1)Pdx, (6)  

--I/2 --!/2 

i I12 
U(x)/Ui = I - -  (S~x'~+ 1)~dx'l j" (S~x2-}- 1)~dx. (7)  

-t /2 -I/2 

The parameter S can be calculated as a function of Ui/V m on the basis of the relation 

I/2 
S :  Vm j" (S2x 2+ 1Fdx/ 

U~ -1/2 

I/2 
j" x 2 (S ~ x ~ + 1F dx. 

- -1  ,/2 

(8) 

2. Stability of a Spiral Flow of Pseudoplastic Fluids 

To evaluate the effect of pseudoplasticity on the stability limit, we will resort to 
a theoretical analysis in which we assume that the secondary flow for a very narrow annular 
slit is toroidal. The solution of the problem even in this simplified formulation will make 
it possible to determine dimensionless parameters that describe the stability limit. In 
accordance with the theory, axisymmetric perturbations of the main flow can be represented 
in the form 

V~ = Vh (r) exp (iat + ibz). 
To l i n e a r i z e  t h e  e q u a t i o n s  o f  m o t i o n ,  we make use  o f  p e r t u r b a t i o n s  o f  v i s c o s i t y  

(9) 

= ~o + B', ( i 0 )  
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Fig. 3. Stability of a Couette flow of 
pseudoplastic fluids: theoretical re- 
suits; 2) results from [12]. 

n--I 

K (v0,) 1 (ll) 
Here, Z0 is the distribution of viscosity in the main flow. The elements of the strain-rate 
tensor are determined by differential equations (i), (2) or (6), (7) 

�9 " " " "2 
b' : P0 (n- I)(+z~ ~ z, "J- ?e~ ? or)/(?zr Jr ~L), (12) 

~" is the perturbation of viscosity corresponding to the secondary flow; %ij are elements 
of the strain-rate tensor corresponding to the velocities of the secondary ~low Vi'. The 
linearized stability equation can be changed into a dimensionless eigenvalue formulation 
of the problem in which Re and Ta are based on viscosity averaged across the gap: 

~ m  h 

As a result, we arrive at the operator 

~0 (y) @. (13) 
1 

L ( a ~  n Re Tak) = 0, (14)  

where a and B a r e  d i m e n s i o n l e s s  p a r a m e t e r s  c o r r e s p o n d i n g  t o  a and b. The q u a n t i t y  Ta k p l a y s  
the role of the eigenvalue. Calculations were performed for a narrow slit ~ = 0.9 with the 
use of profiles (6) and (7). The lowest positive value of Ta k was obtained for ~ = ~ (square 
vortical cells). The ranges of the parameters were as follows: Re < 200, 0.25 < n < 0.9. 

The results obtained for V m = 0 (stability of a Couette flow of pseudoplastic fluids) 
are shown in Fig. 3 in the form of the relation Tak(n). it can be seen that reinforcement 
of pseudoplasticity (a reduction in n) reduces the critical value of the Taylor number. This 
is in complete agreement with the data in [12], which is also shown in Fig. 3. The results 
of our calculations for n = 0.9 (slight pseudoplasticity) are close to the stability limit 
for the Newtonian analog [7]. The theoretical predictions obtained give an increase in Ta k 
with an increase in Re throughout the investigated range of Re and n (the axial flow has 
a stabilizing effect on the rotational flow). The stability limit is especially heavily 
dependent on n within the region of very small Re (Fig. 4). A reduction in n results in 
a very large reduction in Ta k. This effect gradually weakens with an increase in Re and 
disappears at Re > 30, with all of the points lying on one curve. The results obtained for 
pseudoplastic fluids at Re > 30 coincide with the stability limit for a Newtonian fluid [7]. 
The use of the dimensionless criteria Re and Ta on the basis of averaged apparent viscosity 
is reflected in the resulting general relation Ta k = f Re for determination of the stability 
limit of a spiral flow of pseudoplastic fluids in the range Re > 30. 

3. Experimental Method and Unit 

The stability limit was found by an indirect method based on measurements of the mass 
flow from the surface of the internal cylinder. It is well known that the formation of a 
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Stability of a spiral flow of pseudoplastic fluids: 
theoretical result for a narrow slit, ~ = 0.9: I) n = 0.25; 2) 
0.50; 3) 0.75; 4) 0.90; 5) 1.0 [7]. 

Fig. 5. Diagram of experimental unit: working section: i) in- 
ternal cylinder (a, cathodes; b, anodes); 2) external cylinder; 
3) bushings with bearings; 4) mercury current pickoffs; 5) po- 
tentiostat; 6) container; 7) pump. 

secondary flow is manifest in an appreciable intensification of mass transfer [16]. Measure- 
ments with a hot-wire anemometer showed that the most sensitive region is located near the 
surface of the inside cylinder [17]. This justifies the use of the method we have chosen 
to calculate the stability limit of a spiral flow. 

The mass flows were determined by an electrochemical method [18]. We used solutions 
of ferricyanides and nickel electrodes. During the occurrence of the polarization-controlled 
reaction, the following relationship exists between the limiting electric current and the 
mass transfer coefficient 

itr = k~ zi Fo C~. (15) 

Thus, the value of the mass-transfer coefficient can be determined from direct measurements 
of the electrochemical current at the prescribed potential. Figure 5 shows a diagram of 
the experimental unit we used. It has four main parts: a working section; a container with 
a thermostat; a circulating pump; an electrical system for electromechanical measurements. 

The main component - the working section - is a hollow rotating cylinder which has three 
sections: an inlet section (200 mm long) made of stainless steel; a cathodic section consist- 
ing of four nickel rings insulated from one another (each ring is 18 mm long); an outlet 
section, serving simultaneously as the anode, in the form of a nickel-plated steel rod. Both 
ends of this cylinder (the internal cylinder) are placed in bearings which are fastened by 
stainless steel bushings. The external cylinder, made of Pyrex glass, is placed in the bush- 
ings coaxially. We used three replaceable external cylinders with inside radii of 46.4, 
50, and 60 mm. The outputs from the cathodes and anode, with a stabilized power supply (po- 
tentiostat), were connected to both ends of the inside cylinder through mercury pickoffs. 

Working Fluids. We used three types of aqueous solutions: carboxymethylcellulose (CMC) 
(0.45-0.8 mass %); i% methylcellulose (MC), glycerin (G) (50%). In accordance with 
the requirements of the electrochemical method, we added the following to the solutions: 
0.2 mole/liter sodium bicarbonate (base electrolyte); 0.01 mole/liter potassium ferrocyanide; 
0.005 mole/liter potassium ferricyanide. The solutions exhibited non-Newtonian properties 
and obeyed an exponential flow law with a flow index between 0.64 and 0.95. The polymer 
solutions were prepared 24 h before the tests, while the ferri- and ferrocyanides were added 
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Fig. 6. Stability of the spiral flow of pseudoplastic fluids: 
points) experimental data; curves) theoretical results for a 
Newtonian fluid (axisymmetric vortices). 

the day of the tests. The entire composition was then injected with gaseous nitrogen. Be- 
fore the measurements were made, we stabilized the theological properties of the solution 
by subjecting it to repeated pumping through the channels of the unit. 

Measurements of Stability. We determined the dependence of the limiting current is on 
the angular velocity ~i of the inside cylinder. Measurements were made on a cathode ring 
positioned 270 man from the inlet. The speed of rotation was varied while keeping the axial 
velocity V m fixed. The current is remained nearly constant up to certain speeds, which in- 
dicated the absence of secondary flows. A sudden increase in current is beginning with a 
certain value of ~i was interpreted as the onset of instability. By repeating this pro- 
cedure for different values of axial velocity Vm, we obtain the required relation ~k = f(Vm)" 
The tests were augmented by visual observations for the 0.45% solution of CMC. It was found 
that the point at which is begins to increase corresponds closely to the moment of the appear- 
ance of Taylor vortices in the visualization tests. 

4. Results 

Stability of Couette Flow. The data obtained for very low axial velocities V m can be 
used to analyze the stability of Couette flow (V m = 0). This follows from the smallness 
of the effect of the axial flow on the stability of rotational flow at low Re. Theoretical 
calculations predict the destabilizing effect of pseudoplasticity on Couette flow. We per- 
formed our calculations in the narrow-slit approximation, i.e., with a constant viscosity 
across the gap. This constancy is not seen for a wide gap, in which case viscosity will 
be lower near the rotating inside cylinder than near the stationary outside cylinder. The 
difference in these viscosities will increase with a decrease in the flow index n and the 
ratio of the radii ~. In order to compare data for different n and ~, it is necessary to 
choose the appropriate characteristic viscosity. According to visualization experiments 
[14], the onset of instability in a pseudoplastic fluid is characterized by toroidal eddies 
- as in the case of a Newtonian fluid. Making use of the fact that the eddies fill the en- 
tire gap, we can take the mean viscosity (V m = 0) 

] f 

- -  ~ ~o (y) @ = 
~ =  1 - - ~  

( 1 6 )  

= K o , 2 - '  ( l - - n )  ~ (n  ~ - -  1) - -  I . 
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TABLE i. Dependence of TakF M on Re for Different Gap 
Sizes 

Re 0,86 0,80 0,60 

Ta k Tah Fbf Tah Tah F M 

0,2 
20 
60 
100 
140 
200 

Tah Tah F M 

45,6 41,3 
46,4 42,0 
58,0 52,5 
80,4 70,4 

110,3 99,9 
156,0 141,8 

48,6 
50,4 
66,5 
88, 1 

117,2 
164,4 

41,8 
43,4 
55,2 
70,8 

100,5 
141,2 

58,3 
61,6 
75,5 
99,5 

139,8 
177,5 

39,9 
42,2 
51,7 
68,8 
95,8 

121,6 

Measurements made with very low values of axial velocity were analyzed in dimensionless 
form to determine the Taylor number from the mean viscosity Bm" 

In the comparison, we used the following criterion for the stability of a Couette flow 
of a Newtonian fluid: 

Ta~ FM (0) = 41.3, 

F M ( ~ ) =  2 1 - - 1 . 5  1 - - 0  1/e. 
0 + 1  1 + 0  

T h i s  c r i t e r i o n  was f i r s t  e s t a b l i s h e d  by Meksyn [19] and has  been  shown t o  be  v a l i d  f o r  a 
wide  r a n g e  o f  B- The r e s u l t s  o f  m e a s u r e m e n t s  o f  t h e  s t a b i l i t y  o f  C o u e t t e  f l o w  ( f o r  Re < 3) 
a r e  shown in  F i g .  3 in  t h e  f o r m  o f  t h e  d e p e n d e n c e  o f  t h e  T a y l o r  number  on n .  The d a t a  f rom 
the experiments performed with water-glycerin mixtures is in agreement with the stability 
criterion for Newtonian fluids. The values of Ta k for the polymeric fluids turned out to 
be below the values predicted by this crlterion. Reinforcement of pseudoplasticity leads 
to a reduction in the critical Taylor number. We compared the measurement results with theo- 
retical estimates for the Couette flow of a power-law fluid. It was found that the reduction 
in Ta k which occurred in the tests with an intensification of pseudoplasticity was close 
to the theoretical reduction. These tendencies have been noted by other investigators (see 
Fig. 3). All of the results were obtained from visualization experiments with aqueous solu- 
tions of CMC for q > 0.6. The experimental points lie along the theoretical curve with stan- 
dard deviations of 12%. 

Stability of Spiral Flow. The calculations were based on Eqs. (4) and (5). It was 
established that (Ui/V m) > 2.5 for all points. An analysis of the velocity profiles led 
to the conclusion that the distortion of them caused by the axial component has very little 
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effect on the stability limit. However, it was also found that the viscosity field may be- 
come quite nonuniform when axial velocity is high (Fig. 2). 

It was established from a simplified theoretical analysis of the stability problem that 
by using the mean viscosity in the criteria Re and Ta, it is possible to obtain a generalized 
expression for the stability limit of a spiral flow of pseudoplastic fluids. 

The results of tests concerning the stability of the flow of pseudoplastic fluids can 
be generalized in accordance with the proposed method [Re and Ta k being based on the mean 
viscosity ~m, Eq. (13)]. The results for three gap sizes are shown in Fig. 6. The experi- 
mentally obtained stability limits can be divided into two ranges: i) Re < 20; 2) 20 < 
Re < 200. In the first range, with low Reynolds numbers, the axial flow typically has little 
effect on the stability of the rotational motion. Intensification of pseudoplasticity lowers 
the critical value of the Taylor number (for fixed Re). This tendency is stronger at Re 
0 but nearly disappears at Re = 20. The stabilizing effect of the axial flow is more pro- 
nounced above this value. The data for polymer solutions is close to the results obtained 
for Newtonian fluids (water-glycerin mixtures). On the whole, the results confirm the pre- 
vious conclusions to the effect that the conditions for the onset of instability can be rep- 
resented through values of Re and Ta based on mean apparent viscosity ~m" 

5. Generalization of the Results 

To cast the results obtained here in a more universal form, let us examine the effect 
of the geometric parameter N on the stability limit. The problem of the stability of a spiral 
flow of a Newtonian fluid in a wide slit was solved with the assumption of an axisymmetric 
secondary flow. We regarded the stability equation, taken from [7], as constituting an eigen- 
value problem for Ta k. Here, the number Re is a parameter. Calculations were performed 
for an initial range Re < 200 and several values 0.6 < n < 0.9 (the results are shown in 
Table i). It was found that the use of a modified Taylor number TakF M makes it possible 
to generalize theoretical results for individual values of N. This is also evident from 
Table i. We made use of this finding in our analysis of the experimental results. For a 
generalized comparison of results obtained with different ~ = (RI/R=), we transformed the 
test data into the dependence of the modified Taylor number TakF M on Re (Fig. 7). All of 
the experimental points lie along one curve (to within 10%). Thus, we determined a general- 
ized stability limit for spiral flows of pseudoplastic fluids which is valid for the condi- 
tions n > 0.6 and Re < 200. 

The agreement with measurements made by other investigators for Newtonian fluids (water 
and air) in this range of Re turned out to be good. The generalized stability limit is valid 
at low Re, where the rotational flow undergoes monotonic stabilization by the axial flow. 
This situation is disturbed at ~ = 0.5 [8]. 

CONCLUSIONS 

The results of measurement of stability were correlated with the use of Reynolds and 
Taylor numbers based on mean viscosity. The stability limit for Couette flow can be expressed 
through the functional dependence of the modified critical Taylor number TakF M on the flow 
index n. This dependence, characteristic of all "power-law" pseudoplastic fluids, is close 
to the theoretical predictions and expresses the destabilizing effect of pseudoplasticity 
on rotational motion. 

Beyond the initial range Re > 20, pseudoplasticity has almost no effect on the stability 
of spiral flow. In the range where the axial flow monotonically stabilizes the spiral flow, 
stability is described by the generalized dependence of the modifiedTaylor number TakF M on 
the Reynolds number. This dependence is valid for all pseudoplastic fluids (including New- 
tonian fluids) and relative gap sizes N = RI/R 2. 

NOTATION 

a, frequency, sec-1; b, wave number [Eq. (9)], sec-l; B = ~R23&p/(MoL), parameter; Cs 
concentration of reacted ions, kmoles/m3; d = R 2 - R I, width of slit, m; f(..), function 
determined by Eq. (3); F0, Faraday constant, sec/kmole; F M, Meksyn geometric parameter; is 
limiting current, A/m2; K, consistency index, N.sec/m2; k = rm/R 2, parameter; kc, mass-trans- 
fer coefficient, m/sec; M0, turning moment per unit length, N; n, flow index; p = I/2n - 1/2, 
parameter; AP/L, pressure loss per unit length of the annular channel, N/m3; r, radial coordi- 
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nate, m; rm, radial position of velocity-profile maximum, m; RI, R2, internal and external 
radii of slit, m; Re = VmP2d/Dm , Reynolds number; S = (&P/L)2~R22d/M0, parameter; Ta = 
mid3/2RlZ/2p/~m, Taylor number; U, tangential velocity, m/sec; Ui, tangential velocity on 
the surface of the internal cylinder, m/sec; V, axial velocity, m/sec; Vm, mean axial veloc- 
ity, m/sec; Vk', component of perturbation velocity, m/sec; Vk, amplitude; Vk, perturbation, 
m/sec; x = (r - (R l + Ra)/2)d, dimensionless radial coordinate; y = r/R, radial corodinate; 
Zi, number of electrons participating in the electrochemical reaction; D, apparent viscosity, 
Pa-sec; D0, apparent viscosity of the main flow, Pa.sec; D', perturbation of the field of 
apparent viscosity, Pa.sec; Dm, mean value of apparent viscosity, Pa-sec; iij, components 
of the strain-rate tensor for the main flow, sec-Z; ~ij', components of the strain-rate ten- 
sor for the perturbed flow, sec-1; ~, angular velocity, rad/sec; mi, angular velocity of 
the internal cylinder, rad/sec. 
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